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We demonstrate that the requirement of GaHlean invariance determines the choice of H function for a wide 
class of entropic lattice-Boltzmann models for the incompressible Navier-Stokes equations. The required H 
function has the form of the Burg entropy for D = 2, and of a Tsallis entropy with q= 1 -(2/D) for D>2, 
where D is the number of spatial dimensions. We use this observation to construct a fully explicit, uncondi- 
tionally stable, Galilean-invariant, lattice-Boltzmann model for the incompressible Navier-Stokes equations, 
for which attainable Reynolds number is limited only by grid resolution. 

DOT: 10.I103/PhysRevE.68.025103 PACS number(s): 47.11.+j 

I. INTRODUCTION 

Lattice-Boltzmann models of fluids [1,2] evolve a single- 
particle distribution function in discrete time steps on a regu- 
lar spatial lattice, with a discrete velocity space comprising 
the lattice vectors themselves. The single-particle distribu- 
tion corresponding to lattice vector c, at lattice position x and 
time step / is denoted by Nj{\,t). The simplest variety of 
lattice-Boltzmann models employ a Bhatnagar-Gross-Krook 
(BGK) operator [3], so that their evolution equation is 

Ni{x+Ci,t + At) = Ni{\,t)+-iN^%x,t)-Ni{\,t)l 
T 

for i=l,. ..,b. Here b is the coordination number of the 
lattice, A'f (x,0 is a specified equilibrium distribution func- 
tion that depends only on the values of the conserved quan- 
tities at a site, and r is a characteristic collisional relaxation 
time. Using the Chapman-Enskog analysis, it is possible to 
show that the mass and momentum moments of the distribu- 
tion function will obey the Navier-Stokes equations for cer- 
tain choices of equilibrium distribution [1]. 

The viscosity appearing in the Navier-Stokes equations 
obtained from these models is proportional to r—j. To 
lower this and thereby increase Reynolds number, practitio- 
ners often over-relax the collision operator by using values 

of T in the range (i,l]. For sufficiently small T, however, 
the method loses numerical stability, and this consideration 
limits the lowest Reynolds numbers attainable. 

In an effort to understand these instabilities, there has 
been much recent interest in entropic lattice-Boltzmann mod- 

els [4-6]. These models are motivated by the fact that the 
loss of stability is due to the absence of m H theorem [6]. 
Numerical instabilities evolve in ways that would be pre- 
cluded by the existence of a Lyapunov function. The idea 
behind entropic lattice-Boltzmann models is to specify an H 
function, rather than just the form of the equilibrium. Of 
course, the equilibrium distribution will be that which ex- 
tremizes the H function. The evolution will be required never 
to decrease H, yielding a rigorous discrete-time H theorem; 
this is to be distinguished from other discrete models of fluid 
dynamics for which an H theorem may be demonstrated only 
in the limit of vanishing time step [7]. 

To ensure that collisions never decrease H, the collision 
time T is made a function of the incoming state by solving 
for the smallest value r^jn which does not increase H. The 
value then used is T=Tmj„/K, where 0<K<\. It has been 
shown that the expression for the viscosity obtained by the 
Chapman-Enskog analysis will approach zero as K ap- 
proaches unity [4-6]. Thus, the entropic lattice-Boltzmann 
methodology allows for arbitrarily low viscosity together 
with a rigorous discrete-time H theorem, and thus absolute 
stability. The upper limit to the Reynolds numbers attainable 
by the model is therefore determined by loss of resolution of 
the smallest eddies, rather than by loss of stability [6,8,9]. 

In a recent review of the subject, Succi, Karlin, and Chen 
[10] have pointed out that entropic lattice-Boltzmann models 
have three important desiderata: Galilean invariance, non- 
negativity of the distribution function, and ease of determin- 
ing the local equilibrium distribution at each site and at each 
time step. 

In this paper, we shall construct entropic lattice- 
Boltzmann models for the incompressible Navier-Stokes 
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equations which are Galilean invariant to second order in the 
Mach number expansion of the distribution function (quasip- 
erfect in the terminology of Ref [10]). We shall show that 
the requirement of Galilean invariance makes the choice of 
H function unique. We shall show that the required function 
has the form of the Burg entropy [11] in two dimensions, and 
the Tsallis entropy in higher dimensions. While the analo- 
gous problem for the compressible Navier-Stokes equations 
is difficult and remains outstanding, the purpose of this paper 
is to point out that the incompressible case is nontrivial and 
interesting in its own right. 

Finally, a point of clarification: Throughout this paper, 
when we describe the lattice-Boltzmann model as "incom- 
pressible," we really mean that it is faithful to the Navier- 
Stokes equations only in the asymptotic limit of incompress- 
ibility. This means that the Mach number must scale with the 
Knudsen number, and the fluctuation of density about its 
mean must scale with the Knudsen number squared. Indeed, 
this is the same sense in which any quasicompressible fluid 
model may be said to simulate incompressible fluid equa- 
tions. In this asymptotic limit the pressure is determined by 
an elliptic equation, and the equation of state becomes irrel- 
evant. 

II. EQUILIBRIUM DISTRIBUTION 

We consider a Bravais lattice of coordination number b in 
D dimensions. We denote the lattice vectors by c,, where i 
= \,...,b, and their magnitudes by c = |c,|. The restriction 
to a single-speed model on a Bravais lattice is done solely for 
the sake of simplicity in presentation. A future publication 
will generalize the results of this paper to multispeed lattice- 
Boltzmann models [12]. 

We demand that the lattice symmetry group be suffi- 
ciently large that the only fourth-rank tensors that are invari- 
ant under its group action are isotropic. The mass and mo- 
mentum densities are given by 

and 

= 2 mNi 

pu=2 mCjNi, 

(1) 

(2) 

where m is the particle mass and u is the hydrodynamic 
velocity D vector. These D + 1 quantities must be conserved 
in collisions. 

If we regard A',, for i=l,.. .,b, as coordinates in a 
fc-dimensional space, the conservation laws (1) and (2) re- 
strict the collision outcomes to a [fc-(D-l-l)]-dimensional 
subspace. Since the conserved quantities are linear functions 
of Nj's, the non-negativity requirement 

Ni^O (3) 
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that H is altered only by collisions and not by propagation, 
we assume that the H function is of trace form 

1=1 

where h'(,x)^0 forx>0. If lim^_^o'!'U) = °°. *en the nor- 
mal derivative of H goes to negative infinity on the polytope 
boundary, enforcing the non-negativity constraint [Eq. (3)]. 
The purpose of this paper is to demonstrate that the require- 
ment of Galilean invariance uniquely determines the choice 
of function h(x). 

In passing, we note that our choice of the form of H 
differs from that of Karlin, Ferrante, and Ottinger [5], which 
is of the form H = I,^Ni\n(Ni/Wi), where IV, are speed- 
dependent weights (equal to the global equilibrium at zero 
flow). That is, prior work has allowed weighted contributions 
to H and found solutions for which h has the form of a 
(relative) Boltzmann entropy, while the present work as- 
sumes uniform contributions to H and finds solutions for 
which h is not a Boltzmann entropy. Both approaches are 
capable of yielding Galilean-invariant hydrodynamics. A 
more general form for H which will subsume both ap- 
proaches as special cases remains an interesting theoretical 
challenge. 

The equilibrium distribution function may be found by 
extremizing H with respect to N,, subject to the constraints 
[Eqs. (1) and (2)] 

d  I        fi       p       \ 
0=-— // p pu , 

dNi\       m'^    m  '^  I 

where fi/m and p/m are Lagrange multipliers. We quickly 
find 

and so 

0 = h'{Ni)-ti-/3-Ci, 

A/r'=0(M + )8-c,), (4) 

is satisfied within a compact polytope whose faces are given 
by the b equations, A'j = 0 for /= 1 b.\n order to ensure 

where the function 4> is the inverse function of h'. The con- 
stants /j, and p are determined by Eqs. (I) and (2). It is 
usually difficult to find an exact analytic expression for them 
in terms of the conserved quantities p and pu, though some 
equilibria are known for which this is possible [8,9]. Alter- 
natively, one may solve for them numerically or perform a 
Taylor expansion in Mach number. We adopt the latter ap- 
proach below. 

III. GALILEAN INVARIANCE 

We seek to Taylor expand the equilibrium distribution in 
Mach number because (i) we can do so analytically, (ii) only 
the first two terms of that expansion determine the form of 
the incompressible Navier-Stokes equations, and (iii) that ex- 
pansion is a useful initial guess for any numerical solution. 
From general symmetry arguments, it is clear that fi will be 
proportional to the hydrodynamic velocity u, so that we may 
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begin our Mach number expansion by expanding Eq. (4) for 
small p. We get 

Nr'=<^(M) + 0'(M)/5-c,+ -4>"ifi)mCiC>+ ■■■. 

Inserting this into Eqs. (1) and (2), and using general prop- 
erties of the Bravais lattice, we find 

p = mfc<^(/i)+- 
mbc 

ID -<f>"{fl)p'+- 

and 

mbc 
pu- 

D 
■<f>'iti)fi+' 

where the ellipses denote third or higher order terms in Mach 
number. Inverting this perturbatively we find that, to second 
order in Mach number, the Lagrange multipliers are given by 

D 
/j,=x- 

;^i f"^^^ 
2c^    [<f>'{x)f 

where x=h'(p/mb), and by 

u^+- 

P= 
D 

P 
mb 

<t>'{x) 
-U+' 

Inserting these into Eq. (4), we obtain the equilibrium distri- 
bution 

Nr"-- mb 

D 
1-1-—Ci-U+ 

D^ <f>ix)<f>"(x) 

2c*   [cl,'{x)r 

Xlc,.c,--l):uu+. (5) 

Now, for lattice-Boltzmann models on a Bravais lattice, it is 
well known that a Chapman-Enskog analysis based on the 
equilibrium distribution 

N"^= — 
'    mb 

D 
1 + —c,-u+- 

D(D + 2) 

1? g\ c,c,- -l|:uu+. 

(6) 

will give rise to the incompressible Navier-Stokes equations 

Vu=0 

and 

—-l-eu- Vu= - -VF+ vV^u. 
dt     ^ p 

Comparing Eqs. (5) and (6), we identify 

« = 
D   \<l>{x)<f,"{x) 

D + 21 [4,'(x)f 

If the factor g is not unity, Galilean invariance will be bro- 
ken. Thus we demand g = 1, and this yields the second-order 
nonlinear differential equation 

<f>(x)<f,"ix)- l + ^U'ix)?. 

The general solution to this equation is of the form 

<l>ix) = C'^'^{x-aCy, 

where C and a are arbitrary constants, and y is to be deter- 
mined. We quickly find that y must be either 0 or -D/2. 
Since a constant (f> would not yield a well defined /i', we see 
that we must have <l){x) = C'^'\x-aCr'^'^, whence h'ix) 

Cia + x ^"), and this integrates to give 

ho+C[ax + lnx] 

Hx)^ 
hn+C ax + 1-2/D 

ifD = 2 

ifDi=2, 
(7) 

where /IQ 'S constant. In fact, the only effect of nonzero ho is 
to introduce an additive constant to H, and the only effect of 
nonunity C is to scale // by a constant factor. In other words, 
hix) is uniquely specified only to within additive and mul- 
tiplicative constants. With this understanding, we may say 
that the requirement of Galilean invariance has uniquely 
specified the choice of H. We also note that lim.^^o''' (*) 
= 00, so the non-negativity constraint will be enforced by the 
dynamics. 

Finally, we write the global Lyapunov function H—'S.Ji 
by summing h(Ni(\,t)) over the lattice. Since the total mass 
is conserved we have complete freedom to choose a, and so 
to within additive and multiplicative constants H may be 
written 

H(r)= 

2 S ln[^,(x,r)] 
X I 

22 2/D 

for D = 2 

for D*2, 

for appropriate choices of a and C. This has the form of a 
Burg entropy [11] for D = 2, and a subadditive Tsallis en- 
tropy [13] with parameter 

2 

for D#2. We note that D«2 corresponds to q^O, and D 
>2 corresponds to 0<g< 1. It is interesting that it is only in 
the infinite-dimensional limit, D—»<», where the set of ve- 
locities becomes infinite, that g—>1 and we recover the 
Boltzmann-Gibbs entropy [14]. We might also expect the 
limit of large b at constant D to yield the Boltzmann-Gibbs 
entropy, but that demonstration will require the multispeed 
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generalization of the present analysis; that work, which will 
also provide the details of the Chapman-Enskog analysis, is 
in progress [12]. The numerical implementation of the model 
described herein is likely to require some careful algorithmic 
optimization, and is likewise left to future publication. 

The appearance of the Burg and Tsallis entropies in this 
context is fascinating. In a footnote of their recent review, 
Succi, Karlin, and Chen [10] noted that the entropy that gave 
rise to the above-mentioned solvable model for a compress- 
ible fluid was related to the Tsallis entropy with q = 3/2, so 
there may be more than one connection with Tsallis thermo- 
statistics [13] lurking here. There are precious few situations 
in which the origins of Tsallis thermostatistics can be traced 
analytically to an underlying microscopic dynamical model, 
as we have done here. 

IV. CONCLUSIONS 

We have presented Galilean-invariant, entropic lattice- 
Boltzmann models for the incompressible Navier-Stokes 
equations. We expect that these models will be useful for the 
simulation of two- and three-dimensional turbulence. As 
noted by Succi, Karlin, and Chen [10], the problem of find- 
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ing perfect models for lattice models of the compressible 
Navier-Stokes equations is much more difficult and may well 
be impossible. We found it interesting that the simpler prob- 
lem, for incompressible fluids, is itself very nontrivial. In 
particular, the appearance of the Burg and Tsallis entropies 
for the H function is surprising. These entropies have here- 
tofore been associated with long-range interactions, long- 
time memory, or a fractal space-time structure. This work 
indicates that they may also be relevant to models with dis- 
cretized space-time and finite domain connectivity, and this 
surely warrants future study. 
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